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Abstract

We consider a certain generalized Freud-type weight W3, (x) = |X|*" exp(—20(x)), where
r> —1and Q: R—>Ris even and continuous, Q' is continuous, ¢'>0 in (0, ), and Q" is
continuous in (0, o). Furthermore, Q satisfies further conditions. Recently, Levin and
Lubinsky have studied the sequence of orthonormal polynomials {P,,(Wé;x)}f: o with the
Freud weight Wé(x) =exp(—2Q0(x)) on R, and then they have obtained many interesting
properties of P,,(Wé;x) [LL1]. We investigate the properties of P,,(WZQ;x), which contain

r

extensions of Levin and Lubinsky’s results and improvements of Bauldry’s results [Bal,LL1].
© 2002 Elsevier Science (USA). All rights reserved.

0. Introduction

Let O: R—R be even and continuous, ¢’ be continuous, Q' >0 in (0, c0), and let
Q" be continuous in (0, o0 ). Furthermore, Q satisfies the following condition:

l<A<{(d/dx)(xQ'(x))}/Q'(x)<B, xe(0, ), (0.1)
where A4 and B are constants. Then
Wo(x) = exp(—Q(x)) (0.2)
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is called a Freud weight, and the typical case is
W,(x) = exp(—|x]*), a>1.

Recently, Levin and Lubinsky have studied the sequence of orthonormal
polynomials {P,,(Wé; x)},2, with the Freud weight (0.2) on R, and then they have

obtained many interesting properties of P,,(Wé; x) [LL1].
In this paper we treat certain generalized Freud-type weights

W,o(x) = |x|"exp(—0(x)) (xeR,2r> —1), (0.3)

and study the series of orthonormal polynomials {P,(W?> 05 %) }ao With weight (0.3),

r

where {P,(W, rQ, x)},-, are constructed by

/ P; (WVZQ, t)P; (WrZQ, )WrZQ(t) dt =6; (Kronecker’s delta),

ij=0,1,2,.. . (0.4)

We investigate the properties of P,(W, ,Q, x), which contain extensions of Levin

and Lubinsky’s results and improvements of Bauldry’s results [Bal,LLI1].

We will use the same constant C even if it is different in the same line. If for two
sequences {c,},-, and {d,},—, there are two positive numbers C, D such that
C<c¢,/d, <D, then we denote as ¢, ~d,.

1. Preliminaries and theorems

First, we denote the fundamental definitions. For Q satisfying (0.1) and 2r> — 1,
we deﬁne the weight W,o(x) in (0.3), and construct the orthonormal polynomials
{P.(W rQ, x)} in (0.4), where

Pu(x) = Pu(Wipsx) = 3, 5" + 4, 7, =7.(W3)>0, n=123, ...

We define b,=7v,,/y,, and denote the zeros of P, (W,Q, x) by
— 00 <Xy < Xp—1p < - <X2, <X1p< 00. Using the reproducing kernel

K (x, 1) = bp{ Pp(x) Pp1(1) = Pu(1)Pur (x)}/(x — 1), (1.1)
we define the Christoffel function A (WrQ, X),

i () = 2 (W2 x) = Ko, %) = by P ()Pt (x) = P(x) P, ()}, (12)
where the Cotes number is given by Az, = 4,(xx) (see [Nel, (3.3),(3.6)]), and satisfies

;L]:nl = b”P;(xkn)P”_] (xkn). (13)

The Mhaskar—Rahmanov—Saff number a, is the unique positive root of the equation

1
u=(2/n)/0 a0 (aut)(1 — )\ Pdt, u>0.
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We also consider the root x = ¢, >0 of u = xQ'(x) for u>0. Then we have
ap~gn~by~x1,, n=1273 .. ([Bal, Theorem 3.5, LL1]). (1.4)
The generalized Christoffel function 4,,(x) is defined by

o) =, it PP Wig(t) dif|P()F, 0<p< oo, (1.5)

where [ [, denotes the class of polynomials with degree at most n. The function /,(x)
in (1.2) is a special case of (1.5) for p = 2. We will give an estimate of 4,,(x).

The following theorem is an improvement of [Bal, Theorem 3.1], where for r = 0
it is given by Levin and Lubinsky [LL1, Theorem 1.8] (this is called the infinite—finite
range inequalities).

Theorem 1.1. We assume pr +1>0if 0<p<oo,and r=0if p = 0. Let K>0. Then
for every Pe [], we have

1PWroll L, vy < CIPWroll L (11 <a,(1—Kn-2))-

We can improve a result of Bauldry’s (see Lemma 2.3) for 4,n(x) = in(WfQ; X).

Theorem 1.2. Let L>0 and ¢>0.

(1) For |x| <ea,/n we have in(WzQ;x) ~ (an/n)zrﬂ.

;
(i) For ea,/n<|x| we have

(Wi %) = Clan ) W (x) [max {n >/, 1 — (|| fan)}] 772,

r

(iii) For ea,/n<|x|<a,(1 + Ln~?3), we see

I (W23 ) ~ (an /) W2 (x) [max{n ™, 1 — (|x|/a,)}] />

r

The maximum zero xi, of Pn(WrZQ; x) is estimated as follows.

Theorem 1.3. There is a certain constant C such that
|(x10/an) — 1| < Cn= %3,

For the zeros x;,, i =1,2,...,n, of P,,(WEQ; x) we have the following estimates.

Theorem 1.4. Uniformly for 2<j<n—1, n=3,4,5,...

Xt = Xt~ (an/m)[max{n>, 1 = (bxul /an) 712,
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Remark 1.5. In fact, we can show that for 2<j<n, n=2,3,4, ...

Xjtn = X~ (an fm)[max {1 = (x5l fan)}] 7.

The following expression of P, (x) is worth our application.

Theorem 1.6. We have an expression
P;:(x) = An(x)Py-1(x) — By(x)Pu(x) — 2r{P,1(x)/x}*,

where

Ax) =2, | " P00 )Wy (1) dr,

B,(x) = 2b, /:f Py (1) Py (1) O(x, 1) Wiy(1) d,

We estimate A4,(x) and B,(x).

Theorem 1.7. We have
An(x)~n/a,, |By(x)|<C,/a, for |x|<Da, (D>0).

We define

0 (r=0),
(X)r:{x (r<0).

The following is our main result:

Theorem 1.8. For |x|<a,(1 4+ Ln~*?) we have

|Pu(x) Wo(x)] <|x| + (%)>< Ca; ' [max{n_2/3, - M}] e

Ap

The values of P),(x;), i=1,2,...,n, are estimated as follows.

Theorem 1.9. (i) If n is odd, then we have
| Py-1(0)[ ~ (”/an)ragl/z’

P (0)] ~ (n/an) na, ).



T. Kasuga, R. Sakai | Journal of Approximation Theory 121 (2003) 13-53 17
(i) For x;,#0, we have
|(d/dx){ Pu(x) Wig(x)} c—y,, | = [P, (xin) Wrg(xin)|

~ na; /> [max{nm, 1- i}] , (1.8)

aﬂ

especially we see

|(d/dx){Pu() Wy0(x)} s, | = |P(x1a) Wog(x1) | ~ i, Pn= /6.

We obtain an improvement of Theorem 1.4.

Theorem 1.10. Uniformly for 2<j<n, n=2,3,4, ..., we have

Can/nngfl,n — Xjn,

especially for |Xju|, |Xj—1,|<na,, 0<n<1, we see

Xj-dn = Xjn ™~ n 1.

Theorem 1.8 is improved as follows. Let [x] denote the maximum integer
nonexceeding Xx.

Theorem 1.11. Let |x;|<na,, 0<n<l1.
(1) We have
max |Pn(x)| ~ (n/an)ra;l/z, (1.9)
[ < Xpuy21

and if 0 <Xy, or xXx_1,<0, then we have

Xk”glgkm | Py (x) W,Q(x)|~a;1/2. (1.10)
(i) We see

max [P (9]~ (/) e, (111)

XS X/ 2]

and if 0< Xy, or xp_1,<0, then we have
max | P, (x)Wo(x)| ~na; 3. (1.12)

Xien SX < Xg—1n

The following precision of Theorem 1.11 is applicable.
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Corollary 1.12. Let |x;|<na,, 0<n<l.

(i) Let n be odd. For 0<da,/n<X<Xp, — 0a,/n, 6>0, we see
|Pu(x)| ~ (n/an)"a, "2,
and there is a constant §' >0 such that for |x|<d'a,/n
[P (x)] ~ (n/an) na, .
Let n be even. For —Xjuo)n + 00y /NS X< X[yj2),n — 6an/n, 6>0, we see

1P|~ (n/an) a2,

(i) Otherwise for Xj, + 0a, /Nn<X<Xg_1, — Oan/n, 6>0, we see
‘P,,(X) WrQ(x)| NCI;I/Z»
and there is a constant §' >0 such that for X, — &' a,/n <X < xp, + 8'ay/n

[P (x) Wig(x)| ~na, >,

The followings are related to the maximum value for P,(x)W,o(x) on R.

Theorem 1.13. Let Q satisfy (0.1). We have
r 1/4
a x _
sup P, o0l (I + (%) ) |1 =21 v
xeR n’r

an

Theorem 1.14. Let Q satisfy (0.1), and Q(0) = 0. We have

an\
sup 17,001+ (%) ) ~a e
xeR n

r

Theorem 1.15. Let Q satisfy(0.1), Q(0) = 0 and let r=0. We have
sup [P, (x) W;g((x)| ~na, *n'5.
xeR

2. Lemmas and proofs of theorems

To show Theorem 1.1 we need the following lemmas. Let 0<p< o0.



T. Kasuga, R. Sakai | Journal of Approximation Theory 121 (2003) 13-53 19

Lemma 2.1 (Bauldry [Bal, Theorem 3.1]). Let pr + 1>0. There are C,D>0 and ny
such that for n>ny and Pe [],

1PW:ollL,w) < CIIPW:ollL, - pay.Da,)-

Lemma 2.2 (Levin and Lubinsky [LL1, Theorem 1.8]). Let K >0. Then there exist ny
and C>0 such that for n=ny and Pe [],

IPWollL, ) < CIIPWoll L, (1x<ay(1-kn215)-

Proof of Theorem 1.1. Let Pe [],, and let us take K'(> K) large enough. Then from
Lemma 2.1 there is a constant D >0 such that

1PWiolly &)< CIPWiolly (e, pa)

C{HPI/VIQHP (|x] <an(1—K'n~2/3)) +||PVV’QHp (ay(1-K'n ’/3)<\x\<Dan)}'

The second term in the last line is able to be estimated as follows. From Lemma 2.2
we have

||PVV1Q||LP (an(1—K'n~23) <|x| < Day)

= HPX WQHp 1 K'n 2/z)<| |<Dan)

<Ca r+l+rp||le+l w, ||17

(-
n »(an(1—-K'n=23)<|x|< Day,)
(

<Ca IR P |

n Ly (x| < an (1=K (n+[r+1]) 7))

<Cl|(x/an)" T PWolly

L,(|x|<an(1-Kn=%/3))
4
<ClIPWiolly, 1y <ay1-sors))-

Therefore, the proof of Theorem 1.1 is complete. [
We estimate A, (W, ,Q, x) = Ap(x). To show it we need three lemmas.

Lemma 2.3 (Bauldry [Bal, Corollary 3.4]). Let 0<p< oo, and pr> — 1, and let
D >0 be the constant in Lemma 2.1. For every ¢, 0<e<1, we have

pr

_ ay,
g @i~ (anfm {14 247 (lxi<eDa),
Remark 2.4. This is given by Bauldry [Bal]. Though he assumed the continuity of
Q" in (— o0, o0), we can omit the continuity of Q" at x = 0. In fact, we can show that
for fixed a and b there is a value a <& <b such that Q'(h) — Q'(a) = Q"(&)(b — a) (see
[Bal, Lemma 5.2]).
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Lemma 2.5. We have
max{(n+ 1)1 = (x| /an,)} ~max{n 1 = (x|/a,)}  (xeR).

Proof. We assume r>0. When r<0, we can show the lemma similarly. From [LLI1,
Lemma 5.2(c)], for some fixed 1>1 we have

|(aw/av) — 1]~ |(u/v) — 1| (2.1)
uniformly for ve (0, o0) and uev/4, iv]. Especially (2.1) implies

= (an/aniy)~1 = (n/(n+r1)) =r/(n+7r) = 0(1/n). (2.2)
By (2.2), for |x|<2a,

1= (|x/an+r) =1 = (|x/an) + (Ix|/an){1 = (an/an+r)}
=1~ (|x|/ay) +0(1/n). (23)

Obviously, we see 1 — (|x|/a,) <1 — (]x|/ans,). Therefore, by (2.3) the lemma is
true. O

Lemma 2.6 (Levin and Lubinsky [LL1, Theorem 1.1]). (i) Given fixed L>0, we set
Jo = {51t <an(1 + Ln~>)}.

I Wi x) ~ (an/m) W () [max{n™>, 1 = (x| /ay)}] ™"

uniformly for xeJ,, and n>1.
(ii) For all xeR and n>1

hn (W3 X) = Cla /m) W () [max{n>, 1 (|x]/a,) 1],
Proof of Theorem 1.2. (i) In Lemma 2.3, we only put p = 2.
(i) Let ga,/n<|x|<na,, 0<n<1.If we put p =2 in Lemma 2.3, then we have

A WzQ; x)=Cl(ay/n) VV)2Q()C)

We show the theorem for na, <|x|.

Wiy = ol | emorape
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[r+1] [r+1]=r 2
> inf / {7 x/1| _ (PW%)(t)} dt N
pe]l,., [1<a {Ix"P(x)}
>C inf / (PWy)* (1) dz/Pz(x)] x>
Pe H”H’.JAFI "|<a11+[r+l]—

> Claypin/(n+ [r + 1)} W2H(x)
x [max{(n+ [r+11) 7,1 = (|x]/ays11))}]
(by Lemmas 2.2 and 2.6(ii))

~1/2

= C(ay/n) WVZQ(x)[maX{Wm7 1— (Ix|/a,)}]""*  (by Lemma 2.5).

(i) Let ea, /n<|x|<na,, 0<n<1. Then we put p = 2 in Lemma 2.3. We show the
theorem for na, <|x|<a,(1 + Ln~??). Using Lemmas 2.1 and 2.6(i)

In(Wip; x) = Peinf [ : (PW,0)* (1) dt] P*(x)

n-1 ©

<c ﬁf{ / w0y dz/P2<x>}

< Ca Plnl_[f{ [ Z(PWQ)Z(t) dt/PZ(x)}

< Cay (an/m) W () [max{n3, 1 = (|x|/a,)}] "
< Clan/m)Wip(x)[max{n, 1 = (|x|/a,)}]™*  (by a,~|x]).

The inverse inequality follows from (ii). From these results, the proof is
complete. [

Lemma 2.7. We assume that pr +1>0 if 0<p< oo, and r=0 if p = oo. There exist
constants ¢, C>0 such that for every Pe [, and n=0,1,2, ..., we have

PW,oll 1, (v <aan/m) < CUPWroll 1 (sanjn< vl <an)
where 0<p< oo. Especially, for r = 0, we have

1Pl )< CIP L,

p(lxl<zan/n ean/n<|x|<an)”

Proof. We use the estimates on the L, Christoffel functions. By the definition we
have for all x and all P of degree <n,

PVl () < COWlx) [ 1PWiol (x)d
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Using our estimates for Christoffel functions from Lemma 2.3, and the inequality
Theorem 1.1, we obtain, for ¢>0, and some C independent of n, P, ¢,
ay
| 1Pty ax

eay /n —pr
/ ﬁ(l + n ) dx
—gay/n 9n }’l|X| ay
& 1\ 7" ay
=2C |:/ (1 + ;) dt:| / |PW,Q|p(x) dx
0 —ay

< Co! / PW, ol (x) dx,

An

ea, /n
/ |PW,olf (x)dx< C

say/n

where C is independent of n, P, ¢. Then we deduce that
eay/n
(/ [PWiol (x) dx) (1-cemhy <! / ‘ |PWrol (x) dx,
—&ay/n é:#g\x\éay,
that is,

eay /n l/p
(/ |PWrQ|”(x)dx> (1— Cerrshylr

ean/n

l/p
<Cs’+'/”</a”<| . |PWrQ|p(X)dx) .
87\)6\(1,1

So, for 0 <p < co the lemma follows if we choose ¢ small enough. Furthermore, when
r>=0 and ¢ is small enough, let p— oo, then we have the lemma for p = 0. O

Proof of Theorem 1.3. We follow the method of [LL1, Proof of Corollary 1.2(a)].
For more general weight W (x) we have (see e.g. [Fr2])
[7, xP(x)W?(x) dx
= .
fioo P(x)W?(x) dx

Xin = sup
pe Hznfz’P?O

Especially, we apply it for the weight W,o(x),

. J2 (an = x)P(x) Wiy (x) dx
ap — Xip = inf = -
pell, P20 J 2, P(x)Wip(x) dx

We see that nth Mhaskar—Rahmanov—Saff number @, for Wé satisfies @, = a,>.
Therefore, when we use Theorem 1.1 with respect to W,¢ in L;-space, for a, we may
take an integrant polynomial of degree 2n. From this
. f\x\gan(an—Z/z)("n — X)P(x) I/Ver(x) dx
lan, — X1, ~ inf 5
re[],, ,.P>0 flxl<uu P(x)Wip(x) dx

We set m = [n'/3] (Gaussian symbol), and P(x) = 4,' (x)R*(x), Re[], . We see

n—m

that |x|<a, means |x|<dap_n(1+L(n—m)*?) for n large enough, because
ap )ty —1~n/(n—m) —1=0(n?7), by (2.1). From Theorem 1.2(iii) we obtain
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that for ea,/n<|x|<a,

It (Wg s X)W () ~ (= m) Y max{ (n = m) 251 = (x| /) }]'/2.
From (2.1) we see a,/d,_, = 1 +0(n"?/3), hence

1= (Ix/an) =1 = (|x|/an-m) + (|x[/@n-m){1 = (@n-m/an)}

=1— (|x|/ap-m) + 0(’772/3)-

Therefore,

Do (Wig s X)W (%) ~ (/) [max{n >3, 1 — (|x| fa,) }]',
For |x|<ea,/n we have

It (X)W (x) < Clnfan)  |x[ <& C(nja,) {1 = (|x]/an)}'/?

(by Theorem 1.2(1)). From these results we see
/ (0 = )73 ()R W)
[x|<ay(1-Ln=23)
S / (an = x)(n/an){1 = (|xl/a,)} PR (x) dx.
|x| <a,(1—Ln2/3)

On the other hand, for ea,/n<|x|<a, we see
Doyt (X)W (x) = Cnfan) {1 — (x| /an)}.

Therefore,
[ AR Wy dx
x| <ay
>c/ e (n/an){1 = (|x|/an)}'* R (x) dx.

Let |x|<ea,/n, where £>0 is small enough and independent of n. By Lemma 2.7 we
have for some constant C;

/ (nfan) {1 — (x]/an)}" 2 R3(x) dx
|x|<ea,/n

<G / (nfan){1 — (1x]/an)}' 2 R¥(x) d.
ea, /n<|x|<ay
Hence,

/x » 7 ()R (x) W (x) dix

L n/a —(Ixl/a 1/2 ) dx
e +1/X<an( Jan){1 = (|x|/an)}'"* R (x) dx.
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Consequently,
< a3y \dp — X 1-— I 1/2R2x dx
@< C inf Jt<a—m) ( ){12 Gy 2R (x)
Re ], Jiea {1 = EHY 2R (x) dx
oL {1—sS2<>< 1s)"/?} ds
SeHm JhAS2(s)(1 — |s)'/*} ds
_ N
< Ca, inf I {11 5)S (S)(l lsz) }ds
sell, S5 {S2(s)(1 —52)"*} ds

= Can(l - xT,erl)'

Here xf,,, is the largest zero of the (m + 1)th orthonormal polynomial for the
ultraspherical weight (1 — 52)1/2 on [—1,1]. Since 1 —x¥, , <Cm™? by Szegd [Sz,
Theorem 6.21.2], we see

la, — x1,| < Caym ™2 < Cayn/3,
consequently we have |(xy,/a,) — 1|<Cn~?3. O
To prove Theorem 1.4 we need the following lemmas.

Lemma 2.8. Let us consider the zero X|,_1y3) - Then there is a constant C>0 such
that Cay,/n< X|(u_1)/2.0- We note that X(,_1) ), is the smallest positive zero if n is odd.

Proof. By the Markov—Stieltjes inequality [Frl, p. 33 (5.10)].

Xit1n n Xin
[m Wio(1) di < Z ikn<[ W2,(1) dt

k=i+1
Zik,,\/l nW,?Q(t)dz.

Therefore,
7»[n</ Who()dt, i=23,...n-1.
Xipln SIS Xi—1p

Let n be odd, and let us consider x{(,;1)/2,, = 0. Then using Theorem 1.2(i)

Clan/n)" " g1y 20 20X 1yj10) > (2.4)

From this we see C(ay/n)<2x((,—1)/2,- Consequently, if n is odd, we have the
lemma.
If n is even, then 0<x((,—1)/21—1 <X[(u—1)/2),»- Hence, the lemma is complete. [

Lemma 2.9. Let Xjy1,=X{(s—1)/2)0, then 1 <Xju/Xj41,<C for a constant C.
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Proof. By Lemma 2.8 we see Ca,/n<xjyi,. Let K>0 be large enough. If
Xn<Ka,/n, then we see l<xp/xi,<K/C. Let 0<p<l. If
Ny < Xj1 0 <X <an(l + Ln~2/3), then we see 1<x;,/xj11,<2/n<C for n large
enough. Therefore, for K >0 large enough, and 0<n <1, we may suppose

Ka, /n<Xj10<Xp<nay. (2.5)
Then for xe[Ka,/n,na,] we see that, by Theorem 1.2(iii),
)LH(W,,ZQ 1X) Wr’Qz(x)~an/n. (2.6)

Here by Lubinsky [Lul,Lu2] we have an even positive entire function G with
nonnegative Maclaurin series coefficients such that

G(x)~Wy*(x), xeR. (2.7)
Then by the Posse-Markov—Stieltjes inequality [KL, Lemma 3.2], for xj;1,>0

)\y’n G(Xjn) + ;LjJ,»l,n G(xj+1,n)

=(1/24 Y Gl) = Y kaG(xn)

k:‘xkn‘<xj*1~” k:‘xk”‘<xj+l'n

><1/z>{ / - / }G(O Wiolt) di
[t|<xju [t < X410

= (1/2) / G(OWo(t)dr=Clgr = xi,)  (by 27)). (28)
Xjpln SIS Xy

Formula (2.8) implies
X D W (Xin) + X2 i 1a Wi (Xjp1.) = COXT — X211y (by (2.7))
jn YV rQ \Ajn M+ Vg \Aj+1n) = jin j+1,n y (.7)).

From (2.6)
2r+1 2r+1
(an/m){(1/Xn) (Xju/Xj110)" "+ (1/Xje10) } 2 CLXGn/ Xj10)™ 7 — 1}
So
C+ (an/n)(1/xj110) 2{C = (an/m) (1)) } (/X 41.0)" "
By (2.5) we see Ka,/n<Xxjii, <X, hence we have
C+ (1/K)={C = (1/K)}(xin/x51) "
Consequently, we have 1 <xj,/xj;1,<C. O

Proof of Theorem 1.4. We take an even positive entire function G as (2.7), that is,
G(x)~ Wéz(x)7 xeR. By the new Posse—-Markov—Stieltjes inequality used in (2.8),
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we see that for 2<j<n — 1

InGxm) =1/2) | D haG) =Y A G(xkn)

k| <[ 1.0 kx| < [

_ 2
S (1/2){/z<|x,1.,, /|r<|xj+1,n|}G(t) Wiglt)

= (1/2)/ G(t)Wiy(1) dt.
|x7+ln‘<1<‘Yj In‘

If x;, = 0, then by Theorem 1.2(i)
(an /) ~ 2 Ga51) < COT), = 3511) = 2C(x(roy) ™
From this we have
Can /n<2X((n-1) /210 = Xj—1n — Xjt1n-
Since x;, = 0, we see
Clan/n) max{n, 1 = (|xl/an)} > <xp10 = X1
Let xj11, = 0. By Lemma 2.9 we see xj, ~ Xj_1,, so we have
AW (Xin) ~ 2w G(xin) /x5, < C(L XG0 (571, = X714
( / ) ln(x] ln — xj+1,n)
< C(XJ—Ln = Xjtin)-
From Theorem 1.2(ii)

Clan/m)max{n>,1 = (bl fan) )] < (g1 = Xps10)-

For x;_1,, = 0 we have the same result.
Let Xji14, Xjn, Xj—1,,>0. By Theorem 1.2(ii) and Lemma 2.9

Clan/m)[max{n > 1 = (Jxul )}
< WQ(x/n)NA/nG(X/n)/Xf;
<C(1/x2) (2 — X2t

<C(1/ ) (X1 = X)) SC(Xj-10 = Xjt1)-

We show the inverse inequality. From (2.8)

InG () + 10 G5y 11) > / G(1) W2 (1) dr.

Xjt1n SUS Xjn
Let xj11, = 0. From Theorem 1.2(i) and (iii)

X (an fm)[max {1 = (|3l fan) ]2 4+ (an/m) ' = Cog
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Therefore,

(an/m)lmax{n™27, 1 = (|xul fan) 3] + (1357 (an /) = Cog
Since by Lemma 2.8 we see Ca,/n<x;,, we have

(an/m)Imax{n=>" 1 = (|5l fan) ] ™* 2 Cxin> Cxj1,0 2 C(Xj 10 = Xji1,0).
Similarly, for x; = 0 we can show the same inequality. Let x;,, xj11,>0. Then

Xt din Wi (Xin) + X701 At Wig (K1) = C ™ — X711

> Cxy (Xjn — Xj410)-

By Theorem 1.2(iii)

Clan/m){[max{n=>" 1= (|xl/a,)}] "

+ [max{n 3,1 = (xjs10/an)}] ™} (00 = Xj410)-

From this we have

Clan/m) max{n=,1 = (xu/a)}] ™ 230 = X1 (29)
This inequality also means

Clay/m)max{n 1 = (x;10/an)} ) =X 10 — X- (2.10)
Here we see

[max{n 3,1 = (xj/an)}] "2 ~ [max{n=3,1 = (xj_14/an)}) ", (2.11)
In fact, if 1 — (xj_1,/a,) <n~?3, then

1-n?3g Xj—1pn/ln = Xjn/ty + (Xj—1 0 — Xjn) [y

< xpn/ay+ Cn™* (by (2.10)),

that is, 1 — (xXju/a,) < Cn= 3. If 1 — (xj_1 »/a,) >n"%3, then by (2.10)

- (u/an) (Xjo1n — Xjn)/an
T Gl T 1= (yrafan)

Therefore we have (2.11). Consequently, from (2.9) and (2.10) we obtain

1< <1+C.

Clan/n)[max{n > 1 = (xp/a) "> =210 — X110

The proof of the theorem is complete. [
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Proof of Theorem 1.6. Using the reproducing kernel (1.1)

/ P Ko (x, ) W2 (1)

C POR (2 - 200} W0 de
P()K( 0O () Wiy(t) di

- 2r/ Ko, ) (1/0) W2y (1) di

Here

/1 _ _p, /_ T P PA) Par () — Po(0) Py ()0, 1) 2 (1) di
a,{ [ B0 0w b, i)
_21;,1{/:0 PP 1 (00(x, 1) W2(1) dt}Pn(x)

=Ap(x)Py_1(x) — B,,(x)Pn(x),/2 = /jﬁ {Pn(2)/t}Kn(x, 1) WfQ(t) dt.
If n is odd, then P,(¢)/te [],_, . So we have

Zr/2 = 2rP,(x)/x.

Let n be even. Then [, must be interpreted as a Cauchy principal value integral.
Moreover, as the integral of an odd function over a symmetric interval is O:
[, (0dd function) dx = 0. Therefore, we see

/- / PeCOLPL) /1y WEy(e) di = 0
k oddk<n
(by the orthogonality). O

To prove Theorem 1.7 we need some lemmas. In the course of proving Theorem
1.7, we will show Theorem 1.8.
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Lemma 2.10 (Levin and Lubinsky [LL1, Lemma 12.1]). Let pe(0,min{l,4 — 1})
and o€ (1,{1 — p}~"). Then for |x|<Da, (D>1) and n>1, we have

O(x,1)* dt< Cay(n/a)”.

|t\<an

Lemma 2.11 (cf. Levin and Lubinsky [LL1, Lemma 12.2]). Let us define for n>1

Yn = max{l7 max _ a,P>(t) Wé(l)(|l| + (an/n)r)zr}v

lt]<an/2

and let p and o be defined in Lemma 2.10. For |x|<Da, (D>1) we have

Ay (x) /by < Cnfa®)y)/*.

Proof. First, let r>0. We repeat the method of [LL1]. Let K >2D>4. For |x| < Da,
and |t|> Ka, we see Q(x,t)~Q'(1)/t< Q’(1)|t|3*72, where B*>2 is even integer [LL1,
Lemma 5.1 (5.2)]. From this and [Bal, p. 222]

24 B2 ,
/|[>K {Pu()Wio(1)}7Q(x, 1) di < C/ {(P,(D)|t] Z Wypl(r)} dr

|t| = Kay,

B2 )
< exp(—Cn) / o P T gl a
t| < Kay,

< exp(=Cn)(Ka,) &' / PO)W(1) dr

— o0

=o(a,?).

From this we see

An(X) /by = / (Pu(O)Woo(0)}20(x, 1) di + o(a;?).

|t|<Kay,

Let 0 =2/o, p=2/(2—-10), g=2/0 =0, and p~' + ¢! = 1. Then from a>1 we
see 0 <2. By the definition of y, we obtain

/t< /2{Pn(t) VV"Q(Z)}ZQ()Q t)dt

<(rafan)" / PAO) Wro(1)} O, 1)

|t <an/2

/p 1/q
<<xn/an>9/2{ / P (1) Wig(2)| 27 dr} { / O(x, z)‘fdz}
lt]<an/2 l7|<a,/2

1/a
<<xn/an>”“{ / /2Q(x,t>“dt} <Cyl/*(n/a?) (by Lemma 2.10).
t<a,
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For |x|<Da, and a,/2<|tf|<Ka, we see Q(x,1)<CQ"(Ka,)<Cn/d? (see (0.1),
(1.4)). Therefore,

/ {Po(t) Wyo(0)}*O(x, 1) dt< C(n/ay)y,)”
a,/2<|t|<Kay,
(by the definition of y,,).

Next, we assume r<0. Let 0, p and ¢ be defined as above. Then, we see
[ Aol Ot

<Gafan)”

1 <au/2

or
\Pa()Woo ()" O(x, 1) (ﬁ) .

1/p
<<xn/an>"/z{ / |Pa(1) Wi (1) *77 dz}
[t|<an/2

1/q
A q 1] )M
’ {/|/2 e (|r| Fan)
X - oy
sl {/,%/ZQM (vam) ‘”} -

Here, we will estimate

A o |t| o n o A o) 421
O(x,t (— dt<C(— O(x, )|t dt.
/|t<an/n (x,1) |t| + an/n Ap [t|<an/n (x,1) ‘ I

Let |¢f|<a,/n and |x| <2a,/n, then we see Q(x, 1) = Q"(s) < C for some s(|s| <2a,/n),
where C is a constant independent of n. If 2a,/n<|x|, then we have, for a certain
|s|=a,/n and p in Lemma 2.10

O(x.1) = 0'(s) < CQ/(s) /s = c% x |57

<M(ﬁ)”<cnz_”

dn an

by the monotonicity of Q’(|s|)/|s|” (see [LL1, proof of Lemma 12.1]). On the other
hand, we see

2r
n .
(—) / 1| dt< Ca,/n.
Ap [t|<an/n
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Therefore,

/ O(x, 1) (”)2” dt
d<afn Nl +an/n
an\ (n*"\" n\* [\l n\"”
< — < — — < —
<)) =<@) @) =)

by (I — p)a — 1<0. So, we have

/ {Pu()Wro(1)YQ(x, 1) di< C(n/ap) 1™
[t|<an/2

For the other part f\tl>u
Consequently, we have the lemma. [

52 We can repeat the same line as the case of r=0.

Proof of Theorem 1.8. By the Christoffel-Darboux formula (1.1) we see
Pn(x> = {Kn<x7 xkn)(x - xkn)}’/{bnpnfl(xkn)}
Furthermore, by (1.2) and Theorem 1.6 we have
)“;1 (WrZQ7 xlcn) = an;(xkn)Pnfl(xkn)v P:,(xkn) = An(xkn)Pnfl(xkn) (212)
Therefore, we have
)°;1(VI/;?Q§ xkn) = bnAn(xkn)Piq (xkn)~ (2.13)
Applying the Cauchy—Schwarz inequality, we have
[Py (x)] < ;Lgl/z(x);b;l/2(xl(n)|x — Xk /[onP—1 (Xpn) |
= ;Lrjl/z(x){An(xkn)/bn}l/z‘x — Xfen -
Therefore, by Theorem 1.2 for |x|>a,/n
|Pu(x)Wo(x)(|x] + (an/n),)"|
< C(njay) P Imax{n=31 = (|x|/a) " Au(xin) 00} P15 = X0l (2.14)

If |x|<ea,/n, then by Theorem 1.2(i) we see that (2.14) is also true. Let |x|<a,(1 +
Ln2/3), L>0. Then, using Theorem 1.4 we can choose Xy, such that

% — x| < Can/m)[max{n=2,1 — (|x|/an)}] /.
Hence, by Lemma 2.11 we have
| () Wo(x)(|x] + (an/n),)’|
< Clan/n) Plmax{n=1 — (|x[/an)}]*{ An(xtn) /Ba}"

< Cay P max{n, 1 = (x| /an) )4/,
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Especially, since a, Py (x) Wg(x)(|x| + (an/n),) " <Cyi/* for |x|<a,/2, we see
7, <Cyx*. From 1<o we have

X,<C, n>l. (2.15)
Consequently, for |x|<a,(1 + Ln=?/?) we have

[Pa(x) Wo(x)(|x] + (an/m),)'| < Cay, P max{n ™, 1 = (|xl/a)}] . O

Proof of Theorem 1.7. From Theorem 1.1 and Lemma 2.7 we have

lz/vPﬁ(z‘)W,,ZQ(t) dt<C/ PAOW (1) di
- ‘xlgan

o0

<C / P () Wiy(1) dt+/ Pr(t)Wiy(1) dt
|x|<ean/n ey /n<|x|<ay

< C/ Pr(t)Wiy(1) dt.
ean /n<|x|<ay

Here, by Theorem 1.8

/ P () Wiy(1) dt<C/ a, ' dt<Ce.
eay /n<|x|<ea,

[x[ < eay

Therefore, for ¢>0 small enough and n large enough there is 6 >0 such that

/ P(OW(1)di=5 (D>1),
ean <|t|<Day,

Furthermore, for |x|<Da, and ¢a, <|t|<Da, we see

O(x,1)<Q"(Day)~n/a’ (see (0.1) and (1.4)).
On the other hand, Q(x,#)>CQ'(t)/t=Cn/a?, so Q(x,t)~n/a>. From this

A,(x) /B> / P(0)W2,(1) O, 1) dr > Cn/d?.

ea, <|t|<Day,

Consequently, by Lemma 2.11 and (2.15) we have 4,(x)~n/a,.
The second inequality of Theorem 1.7 follows the first inequality. In fact, using the
Cauchy-Schwartz inequality, for |x|<Da,

Bl< 2 [ P00 w0 dr}l/z{ | Bameowo dr}m

o}

< Cn/a,. O
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Proof of Theorem 1.9.

(i) From (2.13), Theorems 1.7 and 1.2(i) we see (n/a,)* " ~nP?_(0) for x4, =0,
that is,
|Pn1(0)| ~ (n/a,,)rafl/z.

n

Consequently, we have (1.6).
We show (1.7). Using (2.12) and (1.6), we see

(n/an)errl ~ |anP;1(0>(”/an>ra_l/2|-

n

Hence,
|P,,(0)] ~ (n/a,) na, .

(i) Let x;,#0. By (2.12) and (2.13)
|(d/dx){Po(x) Wrg(x)}_, |

= |An(xjn) Pu—1 (Xjn) Wro(Xjn)|
= ([, (W75 Xkn)  {BaAn (i) ' A (530) Wi (6|
= {0 (W3 ) W (i) } 2 A (530) /B } 2|
~(n/a,)" Plmax{n 1 = ([xufan)}]'* (02 ay)
(by Theorems 1.2(iii), 1.7)
= na,*Plmax{n 3,1 — (x| fan) }]'"*.

Consequently, we have (1.8). Especially,
X)1 (X)) Wio(X) . |~na, ' "n- y eorem 1.3).
d[dx){P,(x)W,0(x)},_,, |~na,**n~"/5 (by Th 1.3 O

Using Theorem 1.9, we can improve Lemmas 2.8 and 2.9.

Lemma 2.12. There is a constant C such that Ca,/n< X, for every n. Here Lemma
2.9 is correct for all xj, #0.
Proof. From (2.13) and Theorem 1.7 we see
)”;l ( Wr2Q7 x[n/Z],n) ~nP)2171 (x[n/Z],n)7
and by Theorem 1.2 we have
An(W i Xinjan) ~ (an/n)* .
Therefore, Pn,l(x[,,/z]‘n)~(n/an)ra,71/2. If we set

x[”/z]:” = 8;1((1”/7’1), én _’0,
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then we see
Pyt () [Xing10~{ (0] @) a2 [
Hence, there is ¢,, 0<¢, <x},/2),, such that
P (&) ~{(n/an)™ a1 fe.
However, this contradicts P;_I(O)~(n/a,,)r+la,fl/2 in Theorem 1.9 (we note the
concavity of y = |P,_;(x)|). For Lemma 2.9 it is trivial. O
Proof of Theorem 1.10. By (2.14) and Theorem 1.7 we have
|Pu(x) Wo(x)(Ix] + (an/n),)|
< Cln/ay)max{n,1 = (|xl/an) ] {An(x) b} | = i
< Cna; 3P max{n=?3 1 - (x| /an) ) *x — Xjn- (2.16)
Using (1.3) and Theorem 1.6 to n+ 1, we see the following:
Ay (Wi Xienin) = bt Py (Kkmi)) Pa (ki)
P;H_] (Xk,n+1) = A, (x/c,n+1)Pn (Xk,n+1)~

Therefore, from Theorem 1.7

Pﬁ(xk,nﬂ)N(]/n);“;il(u/;?gﬁk,nﬂ)a (2.17)
hence, using Theorem 1.2(iii), for x;j,41 #0 we see
| Pa(Xjs1) Wrg(Xja1) | ~ a2 Imax{n ™23, 1 — (|1 | /an) 1]/, (2.18)

Now, we use formula (2.16) for x = x;,41, then by (2.18) we see Ca,/n<|xjt1, —
Xjn| <|Xj—10 — Xjn|. If Xjnp1 =0, then by Lemma 2.12 we have Ca,/n<|xj|=
(1/2)|xj-1,, — Xju|. Consequently, the first formula of Theorem 1.10 is proved. The
second formula follows from Theorem 1.4. [

Proof of Theorem 1.11. (i) Let n be even. By (1.6),
max |Py(x)| = |Py(0)| ~ (n/ay) a, .

] < Xpuj2jn
If n is odd, then by (2.17), Theorems 1.2(i) and 1.10
| P (K1) 21 ms )] ~ (1] an) a2,

Therefore, we have (1.9). In other cases, (1.10) follows from Theorem 1.8 and (2.18).
(i1) First, we show (1.12). By (1.8),

max [P, (x)Wo(x)| = Cna, /.

Xin SXSXk—1n
By Theorem 1.6 we see
Py(x) = Au(x) Py (x) = Bu(x)Pu(x) = 2r{ Pu(x) /x}7,
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hence,
/
xk,,grgg);kilﬂ |Pn(x) WrQ(X)|
<€ max (4,0 Pot (5) Wrgl)
+ B, (x)Pa () Wrg(x)| + 21r] [{Po (x) /x}* Wig ()] (2.19)

Here we use Theorems 1.8 and 1.7. For Ca,/n<|x| we see that from (2.19)

max [P, (x)W,o(x)| < Cna, .

Xien SXS< Xg—1n

By (1.8) we conclude (1.12).
We show (1.11). Let n be odd, and let

max |P,(x)| = |P,(X)], 0<X<Xp/2n-
[ ¥ < X210

Since y = |P,(x)| is concave on [0, X], we see

max |P,(x)] = |P,(0)| ~ (n/a,)'na,>*  (by (1.7)). (2.20)

Here we set X = ¢,a,/n. If ¢,—0, then by (1.9)
|Pa(%) /%[~ (1 /) (n/an) na, .

This contradicts (2.20). So we see X ~a,/n. If in (2.19) we exchange xy, for ¥, and set
Xk—1n = X[uj2n, then the consideration under the inequality (2.19) is correct
similarly. So we have

max | P,(x)Wo(x)| < Cna, /. (2.21)

gsxsx[H/Z],n
Since we see W,o(x)~ (a,/n)" for X <x< X}/, inequality (2.21) implies

max  |P,(x)|<C(n/a,) na; . (2.22)

XSXSX)/2)0

Consequently, by (2.20) and (2.22) we obtain (1.11).
Let n be even. From W,o(xp,/2,) ~ (ax/n)" and (1.8) we have

| P (X)) | ~ (/@) na, ., (2.23)

By Theorem 1.6, P, (x) = A(x)Pn—1(x) — By(x)Py(x). Using Theorem 1.7 and (1.9),
we see

max  |P,(x)|< C(n/ay) na; >,
0 X <X/

So by the symmetry of P, (x) and (2.23) we get (1.11). O

For an application we need an exact result of Theorem 1.11. We estimate the
values in the neighborhood of xi,, and otherwise.
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Proof of Corollary 1.12. Let x;, #0. For the interval [xi,, Xr—1,] we set

max [Py (x) Wyo(x)] = |Pu(Xin) Wro(Zin)|s  Xkn <Xkn <Xk—1-

Xin SXSXf—1
We consider the points A(xk, 0), B(%n, 0) and C(Sn, [ Pn(Xkn) Wro(Xkn)|)-

(a) Let y = |P,(x)W,0(x)| be concave on [xy,, Xr,|. We denote the tangent of y =
|Py(x)Wyo(x)| at A and C by / and /', respectively. Let / and /' intersect at D, and
let us denote the middle point of the segment AD by P. Furthermore, let us
denote the line PC and the graph of y = |P,(x) W,o(x)| intersect by O, and the
x-coordinates of D, P and Q by x =d, x = p and x = ¢, respectively. We also
consider the line AC.

(b) Let y = |P,(x)W,o(x)| be convex—concave on [Xi, Xx,]. For the graph of y =
|P.(x) W,o(x)| we consider the tangent /" passing through the point 4, where the
curve is situated under /” on [xy,, Xx,]. The other notations in (a) are defined
similarly. We denote the tangent of y = |P,(x) W,o(x)| at A by [. Let E(#A) be
the point where the tangent / intersects the graph y = |P,(x) W,o(x)| again, and
let us denote the x-coordinate of E by e. The line AE* expresses the line AE if
Xim<e, or the line AC if e<Xy, (E*=F or C).

(c) From (a) or (b) we obtain the following: Let |x|<#na,, 0<n<l.

(1) We see that on [xy,, Xk] the graph of y = |P,(x) W,o(x)| is situated between the
lines AD and AC, or between the lines AD and AE*.

(2) The x-coordinate d of D satisfies d — xy, ~a,/n, hence, p — xy, ~a,/n and
q — Xjn ~ ay/N.

(3) The slope m of the line PC satisfies |[m| < |{P,(x) W,o(x)}'| for xp, <x<gq.

The proof of (c) follows from (a), (b), especially, d — x4, ~a,/n is shown
as follows. If d — xx, = €qa,/n, €,—0, then the slope of the line AD exceeds
largely over the value given in Theorem 1.11. So it is contradictory. From (3)
we see

P, (x) Wig(x) + {(r/x) = Q' (x)} Pu(x) Wig(x) | ~na,* %, xim<x<g,
so there exists a constant &' such that
|P,(x) W,0(x)] ~na;3/2, Xin KX X + 6 /1.

Let x4, = 0. Then we treat a graph of y = |P,(x)| instead of y = |P,(x) W,o(x)| in the
above consideration. So we obtain the same results described above with respect to
¥y = |Py(x)]. Now, from these the proof of Corollary 1.12 follows. [

Proof of Theorem 1.13. By Theorem 1.1 we see
G = sup | a0 30 (6] + (an),) "1 = (Ix]/an)|
Xe

< C sup [P WH) (x| + (@),)* {1 = (IxI/an)?)

|x|<ay
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(for W;y(x) and Pe [],, we can take the interval [—a,, a,))
<C(a;'?)* (by Theorem 1.8 and (2.3)).

Therefore, we have {, < Ca, 1z,
We show the inverse inequality. By Theorem 1.1

1= / P2(x) Wer(x) dx < C/ P2(x) W,zQ(x) dx
-0 [x|<an

2r
i )> dt (by the definition of ¢,)

<ce [ (- (Itl/an)}l/z(ltlJr(an/n

MSQ,,

1 2r
< 2 n 1_ _1/2 ; < 2 n-
Cla /0 (I—s) ST (@ /n) Jan ds<CCl,a

Consequently, we see {, ~a, 20O
To prove Theorem 1.14 we need the following lemma.

Lemma 2.13 (Levin and Lubinsky [LL1, Theorem 1.9]). Let Q(0) = 0. For Pe[],
we have

|(PWo) ()| < C(n/fay)[max{n", 1 = (Ix|/an)}] | PWollc, )-

Proof of Theorem 1.14. By Theorem 1.8 we see for |x|<a,(1 — Ln~?/?)
[P () Wo(x) (x| + (an/m),)"| < Cay 21 = (x| /@)~ < Cay P06,
Therefore, by Theorem 1.1
1PaWo(|x] + (an/n),) llc, )< Cay ' /2n'°. (2.24)
We show an inverse inequality. Let |(|x|/a,) — 1|< Cn=?/3. Applying Lemma 2.13 to
(PuWr0)'(x) = ¥ (Py Wo)'(x) + rx""! (P, Wp)(x),
we see
|(PuWig) (x)]
<C[¥ (n/a,)n~' || P, Wollr, (x<2an + X (L/a)lIPaWollr, (x/<2a,)]
<Cl(n/a)n™'7 + (1 an)ll|PaWioll1, (4/<2a)
<C(n/a,)n'7||P, Weollp, (v1<2a,)-
If we set x = xy,, then from (1.8),
na,*Pn= < Cnja)n™ P PaWoollr, (1 <2a)-
From this we see
Ca,'*n'S<||P, Wiolle, vy
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Consequently, with (2.24) we obtain

sup [ Py(x) Wo(x) (x| + (an/n), ) | ~a, 2nlle. O
X€E

Proof of Theorem 1.15. Let r>0. From Theorem 1.1 we see

||P:l WVQ‘ |C%~ (R) < C‘ |P;1 W"Q”L%(\x|<a,,(l—Kn*2/3))'
By Theorem 1.6
Po(x) Wig(x) + 2r{Py(x) /x}* Wig(x)
= A (X) Pyt (x) Wro(X) + Bu(x) Pu(x) Wio(x).

Let n be odd, then we see that the polynomial P,(x) is odd. We define x* as
SUP)< x<xp 1, |Py(x)] = |Pu(x¥)], 0<X*<Xp2,. Since we see sign[P,(x)]=
sign[P,(x)/x] in [0, x*], we have

[{Pu () / X} Wig(x)| < | An(x) Paci (%) Wig(x)] + | B () Pu(x) Wi ()]
< Cna’?, 0<x<a®.
For xe[x*, x},/5,,] We see

sup  [Py(x)/x|< sup |Py(x)/x|

XXX/ 0<x<<x*
< Cna,*?.

We use again Theorem 1.6.

| Pu(X) Wi ()| < [[An(X) Pa1 () Wig(x)| + [ Ba () P (x) Wi (x)|

+ 2r[{Py(x) /x}* Wio(x)]]. (2.25)

For xp,/5,, <|x|<na,, 0<n<1, we have

{Pa(x)/x}* Wio(x)| < Cn/an)a, ',
Let na, <|x|. By Theorem 1.14 we see

[{Pa(x)/x}Y* Wyo(x)| < Ca, 00,
So we get

{ P (x)/x Y Wro(x)| < C{(n/ay)a; " * + a3*n'/®},  xeR.
Therefore, from Theorems 1.7 and 1.8 we see that for |x|<a, inequality (2.25)

implies | P, (x) Wyo(x)|< Cna,~*n'/®. From this we have

1P, Wiolle, m) < Cna,*n"/°. (2.26)
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On the other hand, we see

{Pa(x)Wig(x)} = Pu(x) Wyo(x) + rPu(x)x"™ Wo(x)
= Q' (x)Pu(x) Wrg(x).

If we set

max P,(x)W,o(x)| = |Pu(X) W,0(X)],
o P Wag(3)] = [Pa(3) Wrg ()

then from {P,(x)W,o(x)}\_; = 0 we have

[P, (%) Wio(%)| = Q' (%) Pu(%) Wio(X) — r{Pu(%) W,o(%)}/X|
~ na;3*n'/®  (by Theorem 1.14).

Consequently by (2.26) we obtain

max P! (x) Wyo(x)| ~na; > *n'/e. O
Xe

3. Further properties of orthonormal polynomials

To get further properties of orthonormal polynomials we need to strengthen the
conditions for the Freud exponential Q(x). Let v=1,2,3,... . If v=1, then we

assume (0.1), and for v>2 we suppose (0.1) and further that Qe C"+D(R) and
0<xQV(x)/QV(x)<B, j=2,3,...,,
Q"D (x)1 (nondecreasing), xe(0, o0), (3.1)

where B is a positive constant. For this Q(x) the Freud-type weights W,o(x) are
defined by (0.3), and then we say that the weight W, (x) satisfies the condition C(v).

We consider the series of orthonormal polynomials {Pn(WrZQ;x)},fO:O with weights

(0.3). The polynomials {Pn(WZQ; x)},2, are constructed by (0.4) with W,o(x).

r
When v =1, in previous section we have obtained some properties of the

orthonormal polynomials {P,,(W?Q;x)}f: o- In this section we investigate further

¥

properties of {P,(Wy;x)},2.

¥
Our result analogies [KS]. We begin to estimate jth differential of 4,(x) or B,(x)
which is defined in Theorem 1.6.

Theorem 3.1. Let Q satisfy the condition C(v), then for |x|<Da,, D>0,
ADWI<Cn/d, BOWI<Cn/ar, j=0,1,..v—1.

We need an extension of Theorem 3.1.
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Theorem 3.2. Let Q satisfy the condition C(v + 1). For |x|<Da,, D>0, we have the
following estimates:

(1) For each odd integer j, 1<j<v — 1, we have

|4 (x)|< Clxn/a)>.

(i1) For each even integer j, 0<j<v — 1, we have
|BY (x)| < C|x|n/a)>.

Theorem 3.3. We have the following differential equation:
(1) For any odd integer n>1
Py —(Q +4,/4,)P,
+ {(bnAnAn-1/bn-1) + BuBy—1 — (xAp-1B,/bn-1)
+ B, — (4, B/ An) — 2r(Au—1/bu-1)} Pu
+ 2r(xPl, — P,)/x* + 2r(B,_1 — A,/ A,)(Py/x) = 0.

(i1) For any even integer n=2
Py —(Q' +4,/4,)P,
+ {(bnAnAn-1/bn-1) + ByBy—1 — (xAn—1B,/bn-1)
+ B, — (4,B,/4,)} P,
+ 2r(P,/x) 4 2rB,(P,/x) = 0.

We rewrite Theorem 3.3 as follows.
(1) For any odd integer n
a(x)P!(x) + b(x)P,(x) + ¢(x)Py(x) + D(x) + E(x) =0, (3.2)
where
a(x) = Ay(x), b(x) = =0 (x)d(x) — 4,(x),
c(x) = {bu Ay (x) An-1(x) /bu-1} + An(x)Ba(x) By (%)
— {xAu(x)Ap-1(x)By(x)/bp—1} + An(x) B, (x) — A,,(x)By(x)
= 2r{A(x) A1 (x) /bn1}
=c1(x) + c2(x) + e3(x) + ca(x) + ¢5(x) + c6(x),
D(x) = 2r{A(x)By-1(x) — A4, (x) H{ Pu(x)/x},
E(x) = 2r Ay (0)[{xP, (x) — Po(x)}/x"]. (3.3)
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(i) For any even integer n

a(x) Py (x) + b(x) P, (x) + ¢(x) Pu(x) + D(x) + E(x) = 0, (3-4)

where

c(x) = {buAp(x) A1 (x)/bn1} + Ap(x) By(x) B, (x)
— {xAu(x)An1 (%) Bu(x) /bu-1} + An(x) B, (x) — A (x) By(x)
=c1(x) + c2(x) + ¢e3(x) + ca(x) + ¢s(x),
D(x) =2rd,(x)By(x){Pu(x)/x},  E(x) = An(x){P,(x)/x}. (3.5)

By (3.2) and (3.4) forj =0, 1, ...,v — 2 (v=>2) we consider the following differential
equations:

a(x) Py (x) + b(x)Py(x) + ¢(x)Pu(x) + D(x) + E(x) =0, j=0,
a(x) P,/ (x) +{d (x) + b(x)} P, (x) + {6 (x) + ¢(x) } P, (x)
+ d(x)Py(x)+ D'(x)+ E'(x)=0, j=1,
a(x) Py (x) + {jd' (x) + b(x)} PY (x)

: Z: {<S+2> 3+2)(X) - (S*JF 1>b(S+l)(x) + (i)c(é‘)(x)}l)gs)(x)

+ Y () + UV ()} P (x) + ¢V () Po(x) + DV (x) + EV(x) = 0,
j=2,3,...,v=2.

Simply we write

AV () PU(x) + AV () P () + AN (x) Po(x) + DO (x) + EO(x) =0, j =0,
AV )P (x) + A () P(x) + A (x) P (x)
+ A () Py(x) + D) + E(x) =0, j=1,

J

AL (PY () + AT (P () + 50 Al (0PI ()
s=0
+ DV(x) + EV(x) =0, j=2,3,...,v=2. (3.6)
We define

0 (i even),

Gy = { b odd)00) = /a2 + 1)
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Theorem 3.4. Let v=2, and let Q satisfy the condition C(v+1). Then for
|x|<Da,, D>0,andj=0,1,...,v—2 we have the following estimates:

Al ()~ (/@) 147 (0] < CM,(Q: %) (n/ ),
]SO (/@) 5= 0,1,
where the constant C is independent of n, x.

Egs. (3.6) are rewritten as follows.

Theorem 3.5. Let v=2, and let Q satisfy the condition C(v+1). Then for j=

0,1, ...,v—2 we have the following equations:
B/, (x)PY (x) + BI} | (x)PUY) (x Z B/ (x)PY™)(x) =0,

where for xj, #0 we see
|BYL, (o) = (471, (o) | ~ 1/
1B (x1) | < C{M, (s 30) + /il /),
B (k) | < Cl{ vt 7 a0} £ (/) /30,
s=0,1,...,j.
For any odd integer n and xy,, = 0 we have

BV,(0)] = {1 +2r/( +2)HA!,(0)| ~n/ay, |BY)(0)|<C(n/ay)’,

|B[I (0 )|<C[{0<s> 3/as+3+<s>}+n2/as+3] (n3/af,+3),
s=0,1,...,j. (3.7)

The following theorem is applicable.

Theorem 3.6. Let v=2, and let Q satisfy the condition C(v + 1), then fori = 1,2, ...,v
and X, #0

|P£;[)(xkn)| < C{M,(Q; Xin) + 1/|xkn|}17<i> (”/“rl)i72+<i> |P;1(xkn)|‘
For any odd integer n and xi, = 0, using (3.7), we have

IPY(0)|<C(nfa,) " |PL(0)], i=1,2,...,v

After this we prove the above theorems. To prove Theorem 3.1 we need the
following lemma.
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Lemma 3.7. Let j=1,2,...,v—1, and let K=2 be a constant. Then there exist
D=K+1,d>0 such that for |x|<Ka,

_ ) S : 105D (x)(t — x)
Ju(x) = /t>Dan [P”([){(t—x)"“}{ ; (1/if) (x)(t = x) H

X WzQ( ) dt
< Cexp(—dn).

Proof. Foreachi=0,1,...,j
10D (x)(t — x)'| < ClOT (1) (1 — x) | < C{Q (1) /(1 — x)'|
< ClO(NI<CIQ(] (see (3.1)).

Since |t — x| >a,, we see

o5 @)

Hence

B0 [ R{o W) Wiy

|t| = Da,

< Ca, "V|Q (1))

On the other hand, using the method of [Bal, p. 221] for |¢| = (D/2)qa,, We see

Pa(t)Wip(n)< C216"(612n/|f|)2(”'ﬂ)(1/612n)/ Po(t)Wip(t) dt
{|<qm

< Czlénqi(:l—l‘)—l |l| —2(n—r) ]

Since |Q'(1)]* < CAB-Y for a constant B>0 [LL1, Lemma 5.1] and ¢a, <2¢, <2ay,
for a constant D> 0 large enough we have

[ PP Wiyl d

|t| = Da,

<cog [ gy a
(D/2)q2m

<26 qi(nfr)fl / . [t 282 gy
! (D/2)¢2n

<C(2"%/D)'@E2 /n< Cexp(—dn), d>0. O

Proof of Theorem 3.1. Let QeCY*?(R) and |x|<Ka, Then, for each
j=1,2,...,v—1, (8/8xYQ(x,1) is continuous on the compact interval I with
respect to rel (hence bounded), and uniformly continuous for xel. Hence, using
Lemma 3.7, there exists & (1<f<x or x<{<t), and a constant D >0 large enough
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such that
A7) (x)|

< Cb,

2 J!
/|r<Da,, Pl H(l - x)”l}

X {Q’(Z) - ZG) 0" (x)(1 - fo Wiy(1) dt

+ exp(—dn) (d>0) (x<&<tor t<é<x)

<C{1/(G+ 1)}by + exp(—dn)

/ Py (1) QU () Wiy(1) dt
|7|< Da,

< Chy |07 (Day)| / PX(0)W2(¢) di + exp(—dn) < Cn/a]".

The estimate of BY (x) is obtained from that of AY (x) and the Cauchy-Schwarz
inequality. [

If we strengthen the condition for Q, Theorem 3.1 is improved.

Proof of Theorem 3.2. We see that 4, (x) is an even function. Using Theorem 3.1, for
Qe CU*2(R) we have |47 (x)|<Cn/a!, j = 0,1, ...,v. Therefore, for positive odd
integers j<v — 1 there is £, 0<¢<|x|, such that

4 () = {14 ()l 1x]} = [l 47 D ()< Clxln/a).

Since B,(x) is an odd function, we can repeat the above method similarly. [

Proof of Theorem 3.3. If n is odd, then
P:1 =A,Py 1 — B, P, — 2r(Pn/x)7 (3.8)

Pl = AP, +A,P, | — B,P, — B,P, — 2r(xP, — P,)/x". (3.9)
The recurrence formula xP,_, = b,P, + b,_1 P,_» means
P, 5= (x/by—1)Py_y — (bu/bu—1)Py.
Using this (note even number n — 1),
P, =A, 1Py > — By 1Py
= Ap1{(x/bn-1)Pp-1 — (bn/bn—1)Pn} — By1 Py
={(xA4n-1/bu-1) — By1}Pn—1 — (byApn_1/bu_1)Py. (3.10)
By (3.8),
Pu-y = (Py/An) + (Bu/An) Py + 2rPy [ (xAy), (3.11)
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and if we apply (3.11) to (3.10), then

-1 ={(xAn-1/by-1) — Bu1}
x {(P,/An) + (By/An) Py + 2rPy/(xAn)} — (bnAn-1/bn-1) Py
=(1/A){(xAp-1/bp—1) — Buo1 } P,y + (1/Ap){(xAp—1By/bu_1)
—B,_1B, — (buAn-1A4n/bu-1) + 2r(An_1/bs-1)} Pu
— 2r(By-1/An)(Pu/x). (3.12)

Applying (3.11) and (3.12) to (3.9),

Py = A,{(1/A4,) P, + (Bu/ An) Py + 2r(1/ 4,)(Pu/x)}
+ {(x4p-1)/bu_1 — B,_1} P,
+ {(xAp—1By/by-1) — Bu_1By — (byAp—14,/bu_1) + 2r(Ay_1/by_1)} Pu
— 2rB,_(P,/x) — B,P, — B,P, — 2r{(xP, — P,)/x*}
= —{By_1 + By — (xAy_1/by_1) — A,/ A} P,
— {(bpAn-14,/bp-1) + By1 B, — (xA,_1By/by1)
+ B, — (4,By/ An) = 2r(An-1/bn-1)} P
= 2r{(xP, = Py)/x*} = 2r{B,1 — (4,/4,) }(P0/x).

For any even integer n we can also show the result similarly. We have

PZ = — {Bn,1 + B, — (XAnfl/bnfl) — A;/A,,}PZ1
- {(bnAnflAn/bnfl) +B,_1B, — (XAnlen/bnfl)
+ B, — (A),B,/An)} Py — 2r(P,/x) — 2rBy(P,/X).

The equation B, + B, — (xA,_1/b,) = —Q' (the coefficient of P)) is shown as
follows. By the recurrence formula and ¢/(t — x) = 1 + x/(t — x)

B”(X) + B,y (X)

=2 [* Py i (O){baPo(t) + by Paa (1)} O, ) Wi (1) dt

o0

2 [C L1 - Q)W

s}

+ Zx/oo Py [(0)0(x, ) Wiy(1) dt
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=2 [" B 00w - 0w

o0

w2 [ R0 W) d

= — Q(x)+x4,1(x)/b,_1 (because Q'(¢) is an odd function).

From this, we have the result. O

Proof of Theorem 3.4. Let j=0,1,...,v — 2, and |x|<Ka, (K>2). For 4/,(x) =
A,(x), the estimate follows from Theorem 1.7. By the definition in (3.6) and
Theorem 3.2

4L ()< CHA, ()] + 1€/ ()4, ()]}
< C{xln/ay +1Q'(x)In/an} < CMy(Q; X)n/ an.
For A}’L.(x) we estimate a2 (x), H*tD(x) and c¥(x). We see al+?(x) =

A£,s+2)(x). The functions a(x),b(x),c(x),ci1(x), ..., c(x) are defined by (3.3) and
(3.5). We use Theorem 3.2. Obviously,

a5 ()] = |42 ()| < Clx| a3+,

For btV (x), s = —1,0,...,j — 1, we see
s+1 S+1
b(s+1)(x) _ Al(1s+2)(x) + Z ) Q(erl)(x)AElerlfp)(x) )
p=0
We set
s+1 S+l
S ( 00+ ()45 (x)
p=0 p

By (3.1) we see
107 (x)| < Q¥+ (Ka,) < CQ' (Kay)(Kay) " < Cna, P+
From Theorem 3.2
0P DAL (x)] < CnlKay) x| Sy
< C‘x|<S+1—l’>n2/ax+3+<s+lfp>
= n .
Therefore, if {s+1—p> =<5y or0= {s)#{s+1—p), then we see
0D ()AL ()] < Clx| a0
If0=(s+1—p>#<s), then p+ 1 is odd. By (3.1), the function Q¥*!(x)/x is
continuous and increasing on (0, co). From these

100 (1) A7) ()] < CLOPH) (Kay)/ (Ka) |l /> 7)

n
< C‘X| <s>n2/a;+3+<s> )



T. Kasuga, R. Sakai | Journal of Approximation Theory 121 (2003) 13-53 47

Consequently,
|b(x+l)(x)‘ < ‘A’({Y+2)(x)| + ’Z) < C‘x‘<s>n2/az+3+<x>.

Next, we estimate ¢)(x). We prove only the case of odd number 1, and omit the
case of even n. Since {A43(x)4, (x)}*¥) is a linear combination of
A (x)A,(,") (x)AEfZI (x), t+u+v=s, by Theorem 3.2, we have

|C§S)(x)|<c Z |x|<t>+<u>+<v>n3/afl+3+<’>+<u>+<v>.

Lu,v,t+u+v=s
If s is even, then we see
[l < Cr’ay = Clx| 7 n a3+
If sis odd, by {t> + <u) + {v) =1 we see
e ()| <l Jay < Clx| 7 a0
For cg‘Y> (x) by (3.3), (3.5) and Theorem 3.2
Fwl<c 3 140 0BY (x)BY ()]

tu,,t+utv=s "
<C Z ‘x|2+<t>*<u>*<v>n3/af’+5+<t>—<u>—<v>.

tu,0, 1+ u+v=s
If sisodd, by 1 + {(t> — <u) — {v) =0

|Cgs) (X)| < Clx|<7nd Ja 3¢
If sis even, by 2+ (t) — (uy — vy =0

57 (0l < Clx| 7 fay <

For ¢\’ (x) we consider
¢57(x) = (0/bu1) {An(6) A (x) B ()}
o (5/Du ) {An () A (3) By ()}
=c31(x) + ¢32(x), say.

Here

{40 () A1 () B ()}

<C Z ‘x|l+<t>+<u>7<v>n3/az+4+<l>+<u>7<v> <Cn3/az+3, (3.13)

tu,v,tHu+v=s

hence, we have |c{} (x)| < C|x|<”n3/ast3+<> If in (3.13) we exchange s for s — 1,
then for any even s

(1/b,,,l)|{An(x)An,1(x)Bn(x)}(S71)|< cn?las

_ C|X| <s>n3/a2+3+<s> )
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Let s be odd. If we use the first inequality of (3.13) again by 1+ {t> + {u) —
vy =1
(1/bu) {An (%) A1 () Bu()} 7V | < Cle| < 3440

It is easy to see that c3;(x) has the same estimate as cgs) (x).

We can estimate cff)( ) as follows.

< DAY )BT )]

tu,t+u=s
<C Z |x|1+<f>—<u+1>n2/a}s1+4+<t>—<u+l>.

tu,t+u=s

If s is even, then |cff>(x)|<Cn2/a;§+3, and if s is odd, by {t> = (u+1)

1) (x)| < Clx| < n? Ja 3+ (3.14)
For ¢ (x)
Dl<c > Al )] B (%)
tu,tHu=s
<C Z |x|1+<t+1>*<M>n2/as+4+<t+l>—<u>
tu,t+u=s

so, we see that it has the same estimate as cﬁ” (x) in (3.14), that is

e (0l < Clx| 7 fay <.
Finally, we estimate cés) which comes out for any odd integer n.

"1 =11/ ) {An(x) A r (I <C D7 AP ()] 14,2, ()

Lt u=s

<SC Y O R O < O OO O

tu,t+u=s

To prove Theorem 3.5 we need to consider the derivatives of {P,(x)/x}*.

Lemma 3.8. Let x;, #0. We see

Cd
{Pa(0) /)y, = (=1 D (1) GY P (o),

i=1
[{xP,(x) = Pu(x)} /520 = (1) Z ((F + DY P ()X

Let n be odd. For xj, =0
{Pa(x)/x}, = pU0(0)/(j + 1),
[{xP,(x) = Pa(x)}/5%] L = PUF2(0)/(j +2),
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and for X, #0

Jj=1

{PL(x)/x 3 = (1Y D7 (=) (Y PT (xr)

=0
Proof. These follow casily from
=3 (P (k) /1 (x = i)'
i=1
X)/x = > APD (o) /M (x = ) /x}. O
i=1
Lemma 3.9. Let x;,#0. We have

Jj—1

<Clxg! | Y (n/an) 1P (),
5s=0

|{An(X) By () — Ap(x)HPu(x) /x 1

J—1

[A4n () { (xP,y(x) = Pu(x)) /x* NI 1< Clxgh ] D (nfan) 2 [PY) (i),

s=—1

|40 () {P, (x) /x}] YL, | < Clxg)| Z (n/an) | PY™) (k)|
s=—1
Especially, if n is odd, then for xi, = 0 we have

{4 () By1 (%) = A () H P (x) /x}] Ly | < € Z (n?/a,)|PY(0),

s=—1

=2
14, (3P (x) = Pu()) /YL < C D7 (nfa )PS9 (0).

s=—2

Proof. We use the same method as we got the estimate c4(x) of (3.14). Using
Theorem 3.1
[{Au(X) By (x) = A ()} | < CLR? i + nfdlf 2y < Cn i,

Therefore, by Lemma 3.8 we see

|[{An (%) Ba1(x) — AL (x)H{Pal(x) /x ]
3 <f> {An(x) By (x) — A ()} Py () /X320

i=0

J—1 J=i o
< C|xkn|7l 2/az+2 Z |Pt xkn kan| —j+i+t
=1

=]

=l
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. J Jj=t
<C|X]m|7 Z ‘P;t)(xkn | Z 2/a1+2 |X | —j+it+t
=1 i=0
| J J= ] i
<Clxi| ™ D 1P (x| (nz/aifz)(n/an)’f'*
=1 i=0
1 / j 2
<Clxia| ™ D (n/an) ™ PY (1)
t=1
Jj-1 )
<Clx| ™! (n/an) 2 1PY™ ()| (by t=j—9),
s=0
[Au(){(xP),(x) = Pu(x))/x" 1YL, |
(0 0 2
— 1 /
- ZO i An (x){(xpn( ) ( ))/X }\ Xkn
J Jj ] (oit1)
=D AP ) {Pa(x) /XY
i=0 \!
j . Joitl [
j ; j—i+1 i
AT AR FICRE
— i — t
i=0 =0 X=Xkn
j =il -
<Clyial ™ D (/) D 1P ()| a7
i=0 t=0
1 Jj+l j—t+1 A N
<Clxial™ Y PO (i)l D (nfdi) (n/a,y
=1 =0
| Jj+1 ) X
<C|xkn|7 Z (n/an)]7th |P;(1t)(xkn)|
=1
Jj—1 )
<Clxil ™' > (n/an) P IPY ()| (by 1=~ ).
s=—1
Furthermore,
: ] (i) /
[An(){Py(x) /XN | = - A ()P (x x)/x}0
i=0
J = y
< Cla| ™" Y (nfa ™) Y 1P (o) | a7
i=0 =0

j—t

C|an|7 Z ‘PHI xk |Z n/a1+1 n/an)jfift

t=0 i=0
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J
< Clial ™ 3 (/)™ 1PE ()|
t=0

j—1
< C|xkn|71 Z (n/an)XJrz'P;g]iS)(xkn”
s=—1

(by t+1=j—5).

Consequently, we obtain the results.
Similarly, we have the case for x;, = 0. O

Theorem 3.5 is shown as follows.

Proof of Theorem 3.5. Let x;,#0. By Theorem 3.4 and Lemma 3.9 for j=
2,3,...,v—2, we have

|BYL, ()| = |47 (o) | ~ 1/

1BV (xkn) | < LAY, () + (1 |0l (/)|
< C{MH(Q; xkn) + 1/|xkﬂ|}(n/aﬂ)7

1B) (i) | < CLAY ()| + (/)" / |1}
< C{|ovan| 103 1@ 4 (@) P |xal}, s =0,1,...,).
Let n be odd. For xi, = 0 we have (3.7)
1B/5(0)] = {1+ 21/ +2)}|4VL,(0)| ~n/a,,
1B, (0)| < CIAVL (0)] + (n/an)’] < C(n/ay)’,
1B] ()] < C{|A) (0)] + n? /2
<SCHO W3 /a3 <) 1 @3], s=0,1,....5. O (3.15)

Proof of Theorem 3.6. Let x;,#0. If i = 1,2, then the theorem is trivial. For i =
2,3,...,j+ 1 (j<v—2), we assume that the theorem is true. By Theorem 3.5 we see

|PY (x|
<IBYL, (k) / BLLy (6t [ PY D ()|
j—1
+ 3 B (k) /B, 5 () [ PY ) ()|
s=0

SC[{]u'l(Qa xkn) + 1/|xkn‘}‘Py(,j+l)(xkn)|
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j—1
3 (il O r2 a4 (/)™ 3 P (xir)
5s=0

<C|P:1(xkn)|[{Mn(Q§ Xin) + 1/ Xt H M ( Q5 Xin) + 1/‘xkn|}li<j+l>

. ) J—1
% (n/an),/flJr(jJrl} + Z {|xkn|<s>n2/a2+2+<s> + (”/(ln>3+1/‘xlm|}
5s=0

X AM(Qs %) + 1/ Peaal} ~ 97 (/) =T =
Here if j is odd, then
> < CIP o) [[{M( Qs xt) + 1/ 13kl Y (/@)

Jj—1 )
£ 3R+ /e xualnfan Y ]
s=0

< C|P:1(an)|(n/an)f+1_
If j is even, then
> < CIP (o) [{ M Qs Xkn) + 1/ 1%l } (/@)
S seven {2152 + (n)ast™t) /| X H Mo (O Xin) + 1/ xknl }
" (n/any ™7,
S vota [Xeal (721037 + (1] ) ) (1 /an) )

< C| P (x1n) {Mu(Q; Xtn) + 1/ | Xt} (/@Y.
For xj, = 0 the theorem is shown by Theorem 3.5 and (3.15). [
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